A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
Authors
Abstract:
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimization problem, we use trial solutions for the states, Lagrange multipliers and control functions where these trial solutions are constructed by a feed forward neural network model. We then minimize the error function using a numerical optimization scheme where weight parameters and biases associated with all neurons are unknown. Some examples are included to demonstrate the validity and capability of the proposed method. The strength of the proposed method has in its equal applicability for the integer order case, as well as, fractional order case. Another advantage of the presented approach is to provide results on entire finite continuous domain unlike some other numerical methods which provides solutions only on discrete grid of point. In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimization problem, we use trial solutions for the states, Lagrange multipliers and control functions where these trial solutions are constructed by a neural network model.
similar resources
A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
full textA New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems
In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...
full texta spectral method based on the second kind chebyshev polynomials for solving a class of fractional optimal control problems
in this paper, we consider the second-kind chebyshev polynomials (skcps) for the numerical solution of the fractional optimal control problems (focps). firstly, an introduction of the fractional calculus and properties of the shifted skcps are given and then operational matrix of fractional integration is introduced. next, these properties are used together with the legendre-gauss quadrature fo...
full textA Novel Successive Approximation Method for Solving a Class of Optimal Control Problems
This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...
full textA Method for Solving Optimal Control Problems Using Genetic Programming
This paper deals with a novel method for solving optimal control problems based on genetic programming. This approach produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Using numerical examples, we will demonstrate how to use the results.
full textNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
full textMy Resources
Journal title
volume 50 issue 2
pages 131- 140
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023